The following equations closely approximate the AASHTO curves shown in Figure C14.7.6.3.3-1 in the AASHTO LRFD Bridge Design Specifications.

To evaluate the equations, stress should be in psi. The value for strain is in percent.

70 DUROMETER COMPRESSIVE STRAIN EQUATIONS

Shape Factor(SF) \leq 6.0

$$\varepsilon = C\sigma^x$$
 $C = 0.05 * \left(\frac{\sigma}{600}\right)^{0.15}$ $x = 0.65^{\left(\frac{SF}{6}\right)^{1.0 - 0.0004 * \sigma}}$

Shape Factor(SF) > 6.0

$$\varepsilon = C\sigma^{x} \qquad \qquad C = 0.5 * \left(\frac{\sigma}{1000}\right)^{0.5} \qquad \qquad x = 0.25 \left(\frac{SF}{12}\right)^{0.4}$$

60 DUROMETER COMPRESSIVE STRAIN EQUATIONS

Shape Factor(SF) \leq 6.0

$$\varepsilon = C\sigma^{x}$$
 $C = 0.065 * \left(\frac{\sigma}{600}\right)^{0.15}$ $x = 0.60^{\left(\frac{SF}{6}\right)^{0.725}}$

Shape Factor(SF) > 6.0

$$\varepsilon = C\sigma^{x}$$
 $C = 0.65 * \left(\frac{\sigma}{1000}\right)^{0.5}$ $x = 0.25^{\left(\frac{SF}{12}\right)^{0.15}}$

50 DUROMETER COMPRESSIVE STRAIN EQUATIONS

Shape Factor(SF) \leq 6.0

$$\varepsilon = C\sigma^x$$
 $C = 0.10 * \left(\frac{\sigma}{600}\right)^{0.15}$ $x = 0.60^{\left(\frac{SF}{6}\right)^{0.725}}$

Shape Factor(SF) > 6.0

$$\varepsilon = C\sigma^{x}$$
 $C = 0.6 * \left(\frac{\sigma}{1000}\right)^{0.5}$ $x = 0.275^{\left(\frac{SF}{12}\right)^{0.15}}$

Revisions: June 2006

Added explanatory notes defining the intent of the equations and the units for stress & strain.

Feb 2012 Revised Figure reference to match 5th Edition Specifications.